
Dynamic Typing in a Statically Typed Language

[M. Abadi, L. Cardelli, B. Pierce, G. Plotkin]

Matthias Berg
Advisor: Andreas Rossberg

Saarland University, Programming Systems Lab / Software Engineering Chair
Seminar: Advanced Functional Programming

Abstract. Dynamic typing can be useful in statically typed languages.
We extend the simply typed λ-calculus with dynamic typing and elabo-
rate additional features like polymorphism and subtyping.

1 Introduction

There are situations, when even statically typed languages need to perform dy-
namic type checks. Examples are the handling of persistent storage or inter-
process communication. If a process receives some data from another process, it
cannot rely on this data to be of some expected type. The type has to be checked
dynamically.

Another example are heterogeneous data structures. For instance if a lan-
guage supports lists which can contain values of different types at the same
time, then prior to the usage of an element of such a list, its type must be
checked. This can only be done dynamically.

The function eval takes an expression as argument and evaluates it. The
type of the result can only be determined dynamically. This is a further example
were a statically typed language needs dynamic type checking.

Most of the work we present here is based on the papers [1] and [2], which
propose to use a type called Dynamic to allow dynamic type checking. Values
of this type are constructed by pairing a value with its type. Since such values
contain a type, we can check this type dynamically. This inspection is done by
a typecase construct.

Dynamic values are of type Dynamic and they can contain values of any type.
Therefore it is easy to construct heterogeneous data structures in a language
which supports Dynamic. For example a list, which can contain values of different
types, is simply a list of dynamic values.

2 λ-Calculus with dynamic and typecase

We give now a formal definition of an extension of the simply typed λ-calculus,
which knows the type Dynamic and a typecase construct. The syntax is rather
simple:

τ ∈ Typ ::= X | τ → τ | Dynamic
e ∈ Exp ::= x | λx:τ . e | e e | dynamic(e:τ) | typecase e of x:P . e else e

The differences to the simply typed λ-calculus are the type Dynamic and the
new expressions with dynamic and typecase. Values of type Dynamic (upper
case) are constructed by dynamic (lower case). It is used to pair an expression
with its type.

The typecase construct takes an expression of type Dynamic as argument
and checks whether its contained type matches the pattern P . So far a pattern
is just a type and the check is a simple equality test. If the match succeeds,
the expression following the pattern is evaluated, where the variable x is sub-
stituted with the value contained in the dynamic value. So typecase does not
only dynamic type checking, it also gives us access to the value contained inside
a dynamic value. If the type check does not succeed, the expression of the else

branch is evaluated.
For example, the following function checks whether its argument contains a

number (Assuming, the language supports numbers). If the check succeeds, the
result is the number increased by one, otherwise the result is zero.

λe:Dynamic . typecase e of x:Nat . x + 1 else 0

We now give reduction rules for the two new constructs. The others behave
as in the simply typed λ-calculus. The rule for dynamic is rather simple. It states
that the inner expression should be reduces to a value (Values are λ-expressions
and dynamic-expressions, which contain a value):

e ⇒ v

dynamic(e:τ) ⇒ dynamic(v:τ)

The typecase construct requires two rules, since the pattern matching can
succeed or fail. First, the expression following the typecase must reduce to a
dynamic-value. Its contained type τ is matched with pattern P (This is the side
condition). If the match succeeds (τ = P), we reduce e2, where the variable x

is substituted with v1, the value inside the dynamic expression. Otherwise we
reduce e3.

e1 ⇒ dynamic(v1:τ) e2[x := v1] ⇒ v2

typecase e1 of x:P . e2 else e3 ⇒ v2

τ = P

e1 ⇒ dynamic(v1:τ) e3 ⇒ v3

typecase e1 of x:P . e2 else e3 ⇒ v3

τ 6= P

Now that we know the behaviour of dynamic and typecase, their typing
rules should be straightforward. For dynamic we require that its inner expression
really has the claimed type:

Γ ` e : τ

Γ ` dynamic(e:τ) : Dynamic

The first expression in the typecase construct must have the type Dynamic.
Furthermore the last two expression must have the same type τ , the type of
the whole construct. Additionally the environment of e2 is extended with the
variable x of type P , since x is substituted with something of this type, if the
match succeeds during the reduction.

Γ ` e1 : Dynamic Γ, x:P ` e2 : τ Γ ` e3 : τ

Γ ` typecase e1 of x:P . e2 else e3 : τ

As an example we now write a function which, given two dynamic values,
tries to apply the first to the second:

λdf :Dynamic . λdx:Dynamic .

typecase df of

f :Nat → Nat .

typecase dx of

x:Nat . f(x)
else 0

else 0

This function checks whether its first argument contains a function mapping
numbers to numbers and whether its second argument contains a number. But
how can we write such a function, which applies functions of arbitrary types to
their arguments? This problem brings us to the subject of the following section.

3 Pattern Variables

The problem mentioned in the last section arises from the fact, that every pattern
only matches a single type. If we allow the patterns to contain pattern variables,
we will obtain a more expressive typecase construct. With pattern variables
we can match parts of types. For example the pattern U → V with pattern
variables U and V matches any functional type. A successful match binds U to
the argument type and V to the result type of the function. We can now write
a function which applies functions of arbitrary types to their arguments:

λdf :Dynamic . λdx:Dynamic .

typecase df of

{U, V } f :U → V .

typecase dx of

{} x:U . dynamic(f(x):V)
else dynamic(...)

else dynamic(...)

In front of every pattern we write its patters variables in braces. This is done
in order to distinguish them from previously bound variables. For example the
first pattern contains the pattern variables U and V . The pattern of the inner
typecase contains no pattern variables. The U is the variable which was bound
in the first pattern. This way we check whether the type of the second argument
is equal to the argument type of the function.

Interestingly the result cannot be just f(x). We need to pack it again with a
dynamic expression. This is because of the requirement, that the else branches
must have the same type as the matching branch and there is no way to construct
something of type V , but we can easily build something of type Dynamic.

4 Polymorphism

In the following sections we will discuss some possible extensions of our calculus.
It is easy to include polymorphism like in System F [3]. Here polymorphism is
modelled by functions which take types as argument. Such functions are written
λX . e. For example the polymorphic identity function is written λX . λx:X . x

and has the type ∀X . X → X. If this function is applied to some type, it reduces
to the identity function of this type: (λX . λx:X . x) [Nat] ⇒ λx:Nat . x

The integration of this scheme into our calculus is straightforward. The fol-
lowing example illustrates the use of a typecase which matches a polymorphic
function f mapping lists to lists and returns a polymorphic function which, given
a type and a list x of values of this type, applies f to the reverse of x:

λdf :Dynamic .

typecase df of

{} f :∀X . List X → List X .

λY . λx:List Y . f [Y] (reverse [Y] x)
else λY . λx:List Y . x

5 Higher-Order Pattern Variables

Interestingly our first-order pattern variables are not expressive enough in match-
ing against polymorphic types. There is no pattern which matches any poly-
morphic function in a suitable way. For example the types ∀X . X → X and
∀X . List X → List X are incompatible, i. e. there is no non-trivial pattern
which matches them both. One might think that the pattern ∀X . U → U with
pattern variable U does the job, since a successful match can bind U to X or
to List X. But this causes a scoping problem, since U can be used outside the
scope of type variable X. This introduces a new free type variable at runtime.

A solution to this problem are higher-order pattern variables. When such a
variable is matched, it is not bound to some type, but to a function mapping
types to types. The following pattern matches the two types from above by using
a second-order pattern variable F : ∀X . F X → F X. A successful match binds
F to the identity on types, ΛX . X, or the following function: ΛX . List X.

Now X is passed to F as an argument, making F independent of X. This solves
the scoping problem from above.

6 Subtyping

If we include subtyping in our language, this has some implications on our pat-
tern matching. A type T should match a pattern P , if T ≤ P , i. e. if T is a
subtype of P . For example, since Nat ≤ Int, the following match should suc-
ceed:

typecase dynamic(5:Nat) of
x:Int

else ...

Unfortunately, the binding of pattern variables is not an easy task any more.
In general there is no unique solution for this problem. For example it is clear,
that the type Int → Nat matches the pattern U → U . The types Int → Int

and Nat → Nat are both supertypes of Int → Nat and valid instances of the
pattern. But neither of them is a subtype of the other, so there is no reason to
prefer one solution to the other.

This problem can be avoided by only allowing linear patterns, i. e. patterns
where a pattern variable occurs at most once. But this approach is a bit too
restrictive. Another solution is to add subtyping constraints and to perform
exact matching. Here the matching works as in the previous sections, where we
did not have subtyping, but additionally we check after the matching whether
some specified subtyping constraints are met. So first we do an exact pattern
matching and check the constraints afterwards. To match anything which is a
subtype of Int, we write something like this:

typecase dynamic(5:Nat) of
{U ≤ Int} x:U

else ...

Here the match binds U to Nat and then it is checked that Nat ≤ Int. The
problem from above is avoided, since there is simply no way to exactly match
the type Int → Nat with pattern U → U .

7 Abstract Data Types

Another problem that arises with dynamic types is that the typecase construct
destroys parametricity, i. e. now the reduction is not independent of types any
more. Unfortunately type abstraction relies on parametricity to hide its repre-
sentation. Dynamically, abstract types are just their representation types, hence
typecase can be used to expose them. Solutions to this problem include the
dynamic generation of new type names to restore type abstraction [4, 5].

8 Example Languages

There are programming languages which realise some of the presented ideas.
For example the logic language Mercury knows the type univ, which corre-
sponds to our type Dynamic. It also includes the predicates type to univ and
univ to type to convert any value into something of type univ and back [6].

Haskell also includes dynamic typing. The GHC knows the type Dynamic

which is realised via the type class Typeable of types with a known represen-
tation [7]. This representation is compared with the expected type’s represen-
tation during the dynamic checks. This form of dynamic typing only works for
monomorphic types.

The language Clean has a quite expressive dynamic typing. It includes pat-
tern matching with first-order pattern variables and also deals with polymor-
phism [8].

The language Alice ML provides dynamic typing through the concept of
packages. The constructs dynamic and typecase correspond to the operations
to create and open packages, pack and unpack [9]. Alice ML supports subtyping
which also applies to the type check performed by unpack.

References

1. Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typ-
ing in a statically typed language. ACM Trans. Program. Lang. Syst., 13(2):237–
268, 1991.

2. Mart́ın Abadi, Luca Cardelli, Benjamin C. Pierce, and Didier Rémy. Dynamic
typing in polymorphic languages. Journal of Functional Programming, 5(1):111–
130, 1995.

3. Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analysis, et son
application à l’élimination des coupures dans l’analysis et la théorie des types.
In J. E. Fenstad, editor, Proceedings 2nd Scandinavian Logic Symposium. North-
Holland, 1971.

4. Andreas Rossberg. Generativity and dynamic opacity for abstract types. In Dale
Miller, editor, Proceedings of the 5th International ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming, Uppsala, Sweden, August
2003. ACM Press.

5. Matthias Berg. Polymorphic lambda calculus with dynamic types. Bachelor’s
thesis, Programming Systems Lab, Saarland University, October 2004.

6. F. Henderson, T. Conway, Z. Somogyi, and D. Jeffery. The Mercury language ref-

erence manual. University of Melbourne, http://www.cs.mu.oz.au/mercury, 1996.
7. Simon Marlow, Simon Peyton Jones, and Others. The Glasgow Haskell Compiler.

University of Glasgow, http://www.haskell.org/ghc/, 2002.
8. Marco Pil. First class file i/o. In IFL ’96: Selected Papers from the 8th International

Workshop on Implementation of Functional Languages, pages 233–246, London,
UK, 1997. Springer-Verlag.

9. Alice Team. The Alice System. Programming System Lab, Universität des Saar-
landes, http://www.ps.uni-sb.de/alice/, 2005.

10. Benjamin C. Pierce. Types and Programming Languages. MIT Press, February
2002.

