
Jan Schwinghammer, December 5, 2005
Summary of N. Ramsey, Embedding an Interpreted Language Using Higher-Order Functions and Types,
Proc. Workshop on Interpreters, Virtual Machines, and Emulators (IVME’03), pp. 6–14 (2003)

In his paper Embedding an Interpreted Language
Using Higher-Order Functions and Types, Ramsey
presents an API to interface applications, written
in the host language, from within embedded inter-
preters. While the general principles and advantages
of embedding an interpreted language are not new,
his contribution is the design of an API suitable for
interpreters embedded in an ML-like host language
that takes advantage of higher-order functions and
static typing. The main novelty of Ramsey’s ap-
proach is the use of higher-order functions to (semi-)
automatically generate much of the “glue code” that
mediates between embedded and host language.

The first section reviews the motivation for using
embedded, interpreted languages, and contains a dis-
cussion of existing work and its shortcomings: Script-
ing languages are a useful tool to customize complex
applications; to obtain a reusable scripting language
its interpreter should be embedded into the host lan-
guage. This enables applications to take advantage
of scripts, for instance by interpreting configuration
files. The benefit of the embedding approach is that
lexing, parsing and interpretation of scripts need not
concern the application developer. The drawback is
that glue code must be provided to facilitate interac-
tion between application and embedded interpreter,
taking into account the different representations of
values and different calling conventions.

Previous embedded implementations of various
scripting languages were available only for C. The
paper addresses this problem by demonstrating how
to design an API to embed into a statically typed
host language with higher-order functions. The con-
crete presentation is in terms of Objective Caml and
Lua (“Lua-ML”), but Section 2 gives an indication of
both the general mechanisms as well as aspects that
are peculiar to Lua-ML.

Section 3 contains the key contribution of the pa-
per: A side-effect of replacing C as host language is
that Objective Caml’s types and higher-order func-
tions can simplify the generation of most glue code.
Embedding-projection pairs (e-p pairs) are used to

translate between the representation of values in host
and embedded language. An immediate benefit is
that specific programming conventions of either lan-
guage are explicated in a single, well-defined, point of
the program. Moreover, the proposed API provides
support to lift e-p pairs from base types to data types
and higher types, in a type-directed way.

The treatment of functions is where the languages
differ most: Caml has curried higher order functions;
Lua has uncurried functions, but with an arbitrary
number of arguments and results. Moreover, some
embedded functions need access to the global state of
the interpreter. Thus, the major complication is the
lifting of e-p pairs from argument and result types to
function type. A compositional and elegant solution
is provided that adds an additional state parameter
only if necessary.

Ramsey concludes by discussing his experience in
both implementing and using Lua-ML. It appears
that in the majority of cases, glue code for applica-
tions can be derived solely from the type of an embed-
ded function. Conversely, the implementation of the
Lua libriaries in terms of OCaml libraries sometimes
required more complex glue code; explicitly men-
tioned is the example of the string library where Lua
and Caml use differing indexing conventions. Nev-
ertheless, the implementation of the full system is
comparable in size to that of implementations in C.

Lacking prior knowledge of both scripting lan-
guages and embedded interpreters I found the pa-
per tough going in places. Fortunately, Ramsey suc-
ceeded in spelling out the relevant points at the right
level of detail to aid understanding, and I enjoyed
reading the paper.

Type-indexed embedding-projection pairs are an
established concept in the area of denotational se-
mantics, where they can be used to interpret types. It
was nice to see that these mathematical ideas are also
of practical importance. The only criticism I have is
the slightly ambiguous title of the paper; while the
functions are higher-order, the types are not.

Advanced Functional Programming

Norman Ramsey: Embedding an Interpreted Language . . . Christian Lindig

An application with an embedded interpreter
for a scripting language becomes programmable
by the user. This powerful architecture requires
the interpreter to be extended with application-
specific functionality such that the interpreter
(and therefore the user) can control the applica-
tion. In Embedding an Interpreted Language Us-
ing Higher-Order Functions and Types Norman
Ramsey discusses the API for extending an em-
bedded interpreter. He demonstrates for a Lua
interpreter written in Objective Caml (OCaml)
a simple combinator-style API. The glue code
that is required to add an application-specific
function as a new primitive to the interpreter
is reduced to an expression that resembles the
function’s type.

A Lua value is represented inside the Lua-
ML interpreter as the OCaml data type value.
A value can represent any of Lua’s six types,
including numbers and strings. A primitive
function implemented inside the interpreter for,
say, string length is thus a function of type
value → value. Since the string length function
is ultimately implemented as an OCaml func-
tion string → int, this leads to an impedance
mismatch. It must be bridged by glue code:
glue code checks that the value argument is in-
deed a string, extracts it, and applies the length
function to it. It also takes the int result and
converts it back into a value. With traditional
interpreter APIs, like the C APIs of TCL and
Lua, writing glue code like this amounts to con-
siderable effort. It is especially worrying that
similar kinds of checks and conversions must be
implemented for each new primitive.

The key contribution of the paper is a type-
safe combinator-style API. The expression

efunc (string **-> return int) String.length

has type value→ value and prepares the OCaml
function String.length (of type string → int)
for inclusion into the interpreter. Here string
and int are values, each of which encapsulates
re-usable knowledge how to embed an OCaml
string or int into a value, and project it back.
Technically int is an embedding/projection pair
of two functions, one for each direction. While
embedding always succeeds, projection may fail
at run time: a value representing a Lua table
cannot be projected to an OCaml int. Failure

means that a Lua value passed to a primitive
function does has not have the right type.

The combinators mirror the type structure
of the host language—here OCaml. There are
embedding/projection (e/p) pairs for base types
like int, bool, float, and so on. The embed-
ding/projection pair for a function is built us-
ing the binary infix operator **->. A type con-
structor like list corresponds to a function: list
int is an e/p pair for an OCaml int list, list
string for a string list, and so on. As a conse-
quence, a finite number of combinators can be
combined in infinite many ways.

Embedding/projection pairs not only pro-
vide conversion between types but also bridge
programming conventions between host and em-
bedded language. A partially applied Lua func-
tion implicitly “adjusts” the missing arguments
to nil, whereas a partially applied OCaml func-
tion is a function over the remaining arguments.
The e/p pair constructor **-> for functions
takes care of this and makes Lua functions used
in OCaml curried, and OCaml functions used in
Lua uncurried.

Most primitive functions do not depend on
the state of the interpreter but some do for re-
porting errors or to refer to a standard output
file. The interpreter state is not passed explic-
itly to a function being embedded to maintain
a clean and functional API. Instead, a function
must be registered into the interpreter before it
can be used. During the registration the state
of the interpreter is in scope and thus can be
easily passed to the function.

Embedding an interpreter into an applica-
tion has been known as a powerful architecture.
However, the focus has been on the design of
the language whereas the design of the API ap-
peared as an afterthought. This paper rethinks
the design of the API and presents type-directed
combinators as an elegant solution to a difficult
problem. A possible weakness is that all embed-
ding and projection functions are constructed at
startup-time of the interpreter where they most
often will be known at compile time. Some tim-
ing measurements could have been used to quan-
tify this overhead. Also, nothing is said about
systematical error handling in embedded func-
tions.

1

Advanced Functional Programming

Norman Ramsey: Embedding an Interpreted Language . . . Christian Lindig

Embedding an Interpreted Language Using
Higher-Order Functions and Types by Norman
Ramsey was presented at the ACM SIGPLAN
Workshop on Interpreters, Virtual Machines
and Emulators, June 2003. The paper presents
the extension API of Lua-ML, an implemen-
tation of a Lua interpreter in Objective Caml
(OCAML). The extension API provides glue-
code combinators to build functions that let
travel an ordinary OCAML value into the Lua
interpreter such that it becomes available as a
Lua primitive.

The extension API of Tcl, Lua, and many
other extension languages typically pass values
of the scripting language directly to a function
of the implementation (or host) language. It re-
mains the job of the function to convert such
complex values into more manageable and nat-
ural values of the host language and to detect
potential type errors. This so-called glue code
amounts for a substantial part of any exten-
sion. Ramsey presents with Lua-ML an alterna-
tive design that depends on higher-order func-
tions and user-defined infix operators as they
are available in OCAML (and other functional
languages like SML or Haskell).

A glue-code combinator is a record holding
two functions: embed and project. The embed
function takes an OCAML value and converts
it into a Lua value, the project function takes
a Lua value and projects to an OCAML value.
With such a combinator available, an OCAML

value can be exported to Lua, and a Lua value
represented more conveniently as an OCAML

value.
The idea in Lua-ML is to have such combi-

nators as a library for the basic OCAML types
like int, bool, string, and so on. By convention,
the combinator that handles values of type int
is itself named int. Such a combinator embod-
ies the knowledge how a particular type is rep-
resented in Lua and OCAML. Embedding and
projection are not total functions and thus may
fail: the int.project function will signal an
error when asked to convert a Lua string to an
OCAML int value.

Complex glue-code combinators are built
from simpler ones: list is a higher-order func-
tion that takes any other combinator as ar-

gument: list int converts integer lists from
OCAML to Lua and vice versa. All knowl-
edge about the representation of lists in Lua is
built into the combinator list and can be re-
used independently from the values inside a list.
Higher-order functions like list may create in-
definitely many glue-code functions and are the
main source of expressiveness.

The next and crucial level is the handling
of functions: functions in Lua adjust to the
number of passed values, functions in OCAML

are Curried and thus return a function if ap-
plied to fewer than the maximum number of
values. This impedance mismatch requires sub-
stantial effort by the embedding and project-
ing functions. However, all effort is hidden be-
hind an abstract type and three functions: func,
result, (**->). Thanks to the infix func-
tion **->, the glue code for a function resem-
bles very much its type: func (list int **
-> result bool) converts a function of type
int list → bool . In simple cases, writing glue
code for a function is as simple as writing down
its type.

The handling of a function becomes compli-
cated when the OCAML implementation of the
function requires access to the state of the Lua
interpreter: passing the state explicitly compli-
cates the design presented so far. The solution
is to use a closure: the function is applied to the
state once and from there on has again a simple
signature that does not need to mention state.

Glue-code combinators are an elegant solu-
tion to a difficult problem. An extension im-
plemented against a combinator-based API is
is easier to write and shorter than when imple-
mented against a traditional API. Unlike with
a traditional API, a combinator factors out the
knowledge how a value, even of a user-defined
type, passes between the Lua interpreter and
the host language. A combinator is an extensi-
ble representation of this knowledge.

I find the paper very convincing but would
have appreciated the discussion of two more de-
tails: an example of a function requiring the in-
terpreter’s state for its implementation, and the
discussion of error handling. How does a Lua-
ML primitive implemented in OCAML signal an
error?

2

Embedding an Interpreted Language Using Higher-Order Functions and Types

Putting a reusable, embedded interpreter in
control of an application has significant benefits
for both the developer and the user. For the de-
veloper, using an embedded interpreter removes
the need for parsing command-line arguments
and configuration files. The user, on the other
hand, is granted a much higher degree of flexi-
bility in working with the application.

The APIs of existing interpreters, e.g. Tcl and
Lua, are designed for embedding into C code.
In his paper, Norman Ramsay presents a new
API for Lua called Lua-ML for Objective Caml,
which uses higher-order functions and types, and
provides two significant benefits: 1) type safety,
and 2) less glue code.

The latter is the main contribution of the pa-
per: a novel way to reduce the amount of glue
code, which is needed for using application func-
tions in the embedded interpreter. For most
functions, no glue code is needed at all, but
only a description of the function’s type. This
is achieved by Lua-ML’s ability to create pairs
of conversion functions for arbitrarily many ML
types. These pairs, called e/p pairs, embody
knowledge for embedding (from Caml to Lua)
and projection (from Lua to Caml), where em-
bedding always succeeds and projection may fail
in case of a Lua type error. The pairs are part
of a type-indexed family of functions, which is
built as follows: 1) for each base type such as
float, Lua-ML provides a suitable e/p pair, 2)
for type constructors such as list, Lua-ML pro-
vides higher-order functions which map e/p pairs
to an e/p pair for the constructed type.

Lua-ML uses these embedding/projection
pairs to bridge the gap between the different pro-
gramming conventions of Caml and Lua. For
instance, a string in Lua can represent a float-
ing point number etc. More importantly, Caml
and Lua differ in their function calling conven-

tions. In Caml, functions with multiple argu-
ments are conventionally defined in curried form,
whereas Lua functions are uncurried, which be-
comes apparent when a function is partially ap-
plied: in Caml, partial application results in a
closure, whereas in Lua, the missing arguments
are adjusted, i.e., filled in with nil values. To
convert a Caml function into Lua form, Lua-
ML 1) converts the embedding/projection pair
for the result into a result type using the op-
erator result, 2) adds the argument types us-
ing the operator **->, implementing uncurrying
and adjustment, and 3) converts the result type
back to an embedding/projection pair using the
operator func. Taken together, the three oper-
ators allow to naturally write func (t **-> u

**-> v **-> result w) for the embedding of
an Caml function with type t -> u -> v -> w.

Another innovation of the paper is an elegant
way to support both 1) embedded Caml func-
tions that do inspect or modify the state of the
Lua interpreter, and 2) those that do not. In
both cases, the type of a Lua function is value

list -> value list, without any mention of
the state. This guarantees symmetric embed-
ding/projection pairs for functions, and removes
the need for bookkeeping, which would be in-
duced by state-passing. The state is hidden in
a closure which results from partially applying
the function to the state of the interpreter ear-
lier on (upon registration to the interpreter for
Caml functions, for Lua functions upon process-
ing their definition).

The paper presents very clever and elegant
ideas, and is well written. For my taste, some
of the largely irrelevant details (e.g. the compar-
ison between the Lua 2.5 and 4.0 APIs) could
have been dropped. In addition, I would have
appreciated some more words on Lua fallbacks
and exception handling.

Summary by Ralph Debusmann

