
Universität Karlsruhe (TH)
Research University • founded 1825

Software Architecture: Basics and
Performance Engineering

Guest Lecture
Saarbrücken, 9th June 2009

http://sdq.ipd.uka.de

Ralf Reussner (reussner@ipd.uka.de)

06/16/2009Ralf Reussner: SWA & Performance Prediction 2

▪ What is a software architecture?
▪ What are its benefits?
▪ The Use of Architectures for Software

Performance Prediction

Overview on
today's lecture

06/16/2009Ralf Reussner: SWA & Performance Prediction 3

▪ How to bridge
the gap between
requirements
and code?

The Problem

Requirements

Code

???

1

PDF-Folien für Studis:

- Benutzername stud
- Passwort sw-architektur
-aus dem Wiki verlinkt,
nach der Vorlesung
freigeschaltet

2

3

06/16/2009Ralf Reussner: SWA & Performance Prediction 4

▪ Ad hoc
▪ Requires gurus
▪ Unpredictable
▪ Costly

The traditional Answer

Requirements

Code

A Miracle Happens!

06/16/2009Ralf Reussner: SWA & Performance Prediction 5

▪ More
predictable
processes

▪ Some design
guidance

BUT
▪ Limited applicability
▪ Still requires gurus
▪ Weak support

for design
analysis

Software Development
Methods

Requirements

[Sommerville 04]

OOJSP SADT

Code

Ralf Reussner: SWA & Performance Prediction 06/16/2009 6

Detailed design: Abstraction
Complexity

Less than 50
classes !!!

4

JSP (Jackson Structured
Programming)

SADT (Self Accelerating
Decomposition
Temperature)

5

6

Ralf Reussner: SWA & Performance Prediction 06/16/2009 7

Architecture vs.
Detailed design

C2 Architecture View

Lower-Level Design View
(UML Class Diagram)

06/16/2009Ralf Reussner: SWA & Performance Prediction 8

Several definitions exist:

▪ A software architecture defines the coarse-
grained structure of the system.

▪ A software architecture captures design
decisions which are hard to revert or
which have to be made early.

What is an Architecture?

06/16/2009Ralf Reussner: SWA & Performance Prediction 9

▪ Architectural design is a creative process so
the process differs depending on the type of
system being developed.

▪ However, a number of common decisions
span all design processes.

Architectural Design
Decisions (1)

7

8

9

06/16/2009Ralf Reussner: SWA & Performance Prediction 10

▪ Is there a generic application architecture that can be
used?

▪ Which kinds of distribution are possible and
appropriate?

▪ What architectural styles are appropriate?
▪ What approach will be used to structure the system?
▪ How will the system be decomposed into subsystems

(modules, components)?
▪ What management and evolution strategy should be

used?
▪ How will the architectural design be evaluated?
▪ What are realistic evolution scenarios?

Architectural Design
Decisions (2)

06/16/2009Ralf Reussner: SWA & Performance Prediction 11

▪ How should the architecture be documented?
▪ Which components can or must be bought?
▪ How to include legacy software?
▪ How to communicate with existing software?
▪ How to access existing data?
▪ How does the architecture fit

into the existing portfolio?
▪ What can be re-used from older project?
▪ What should be re-used in the next project?
▪ Is a product-line architecture appropriate?
▪ …

Architectural Design
Decisions (3)

06/16/2009Ralf Reussner: SWA & Performance Prediction 12

▪ An early stage of the system design
process.
▪ Represents the link between specification

and design.
▪ Often carried out in parallel with some

specification activities.

▪ It involves identifying major system
components, their communications and
mapping to hardware or software
resources.

Architectural Design

10

11

12

06/16/2009Ralf Reussner: SWA & Performance Prediction 13

▪ Static structural model that shows the major
system components.
– Interface model that defines sub-system interfaces.

▪ Dynamic process model that shows the process
structure of the system.
– Relationships model such as a data-flow model that

shows sub-system relationships.

▪ Deployment model that shows how sub-
systems and connections are mapped to
resources, such as processors or network
connections
– distribution across computers.

What constitutes a
Software Architecture?

Ralf Reussner: SWA & Performance Prediction 06/16/2009 14

Static View
(Data Objects)

http://www.agilemodeling.com/artifacts/

Ralf Reussner: SWA & Performance Prediction 06/16/2009 15

Static View
(Architecture)

http://www.agilemodeling.com/artifacts/

13

14

15

Ralf Reussner: SWA & Performance Prediction 06/16/2009 16

Dynamic View
(inter component dynamism)

http://www.agilemodeling.com/artifacts/

Ralf Reussner: SWA & Performance Prediction 06/16/2009 17

Dynamic View
(intra component dynamism)

http://www.agilemodeling.com/artifacts/

Ralf Reussner: SWA & Performance Prediction 06/16/2009 18

Deployment View

http://www.agilemodeling.com/artifacts/

16

17

18

Ralf Reussner: SWA & Performance Prediction 06/16/2009 19

▪ What is a software architecture?
▪ What are its benefits?
▪ The Use of Architectures for Software

Performance Prediction

Overview on
today's lecture

06/16/2009Ralf Reussner: SWA & Performance Prediction 20

▪ Stakeholder communication
– Architecture may be used as a focus of

discussion by system stakeholders.

▪ System analysis
– Analysis of whether the system can meet

its non-functional requirements.

▪ Large-scale reuse
– The architecture may be reusable across a range of systems.
– Existing components can be considered during design

• COTS, in-house components, commissioned / off-shore

▪ Project planning
– Cost-estimation, mile stone organisation, dependency analysis,

change analysis, staffing

Advantages of an
explicit Architecture

Predicting the quality attributes of an artefact during design
is a core property of any engineering discipline.

06/16/2009Ralf Reussner: SWA & Performance Prediction 21

▪ Performance
– Localise critical operations and minimise communications.

Use large rather than fine-grain components. Lower
resource usage.

▪ Security
– Use a layered architecture with critical assets in the inner

layers.
▪ Safety

– Localise safety-critical features in a small number of sub-
systems.

▪ Availability
– Include redundant components and mechanisms for fault

tolerance.
▪ Maintainability

– Use of fine-grain, replaceable components, localisation of
design decisions which are likely to change

Architecture and
System Characteristics

PDF-Folien für Studis:

- Benutzername stud
- Passwort sw-architektur
-aus dem Wiki verlinkt,
nach der Vorlesung
freigeschaltet

19

20

21

06/16/2009Ralf Reussner: SWA & Performance Prediction 22

▪ Intrinsic: definition of property A involves
property B.
– “The system is considered available if the reaction time is

below 5 ms.”
– Performability: the performance of a system, including its

performance during failures
▪ Extrinsic: improvement of property A decreases

property B in an architecture C
– Using large-grain components improves performance but

reduces maintainability.
– Introducing redundant data improves availability but

makes security more difficult.
– Note the influence of the Architecture on the relationship:
– The duplication of components can increase performance

and reliability in one architecture while it can decrease
performance in another one.

Relation between
Architectural Quality

Properties

06/16/2009Ralf Reussner: SWA & Performance Prediction 23

▪ Requirements
▪ Re-Use

– Architectures
– Subsystems / Components
– Guidelines

▪ Organisation (Conway's law)
– team size, team number, experience,

organisation structure

Factors Influencing the
Architecture

06/16/2009Ralf Reussner: SWA & Performance Prediction 24

▪ Meta-Model: Model to model a model: which elements having
which attributes.

▪ Model: Abstraction of the modelled entity – with a given
abstraction aim. Instance of a meta model.

▪ Style:
(a) [Reussner] Cross-cutting principles (object-oriented style,
modular style), independent of application, should not be
mixed
like in building: baroque-style, classicist-style
(b) Synonymously used for Pattern

▪ Pattern: Solution to recurring problem / situation where
several forces have to be balanced. Often application specific,
often mixed

▪ View: Commonly emphasises certain aspects of a model
(distribution, componentisation, dynamic behaviour). Is a
mean of structuring an instance of the meta-models. Hence a
view is usually defined for a subset of elements of the meta-
model.

Some Terms

22

23

24

06/16/2009Ralf Reussner: SWA & Performance Prediction 25

▪ What is a software architecture?
▪ What are its benefits?
▪ The Use of Architectures for Software

Performance Prediction

Overview on
today's lecture

06/16/2009Ralf Reussner: SWA & Performance Prediction 26

Why do we want to predict
quantitative Properties?

 Dimensioning of Resources
 (“Sizing”)

vs.

 Changes of usage profile –
 Scalability

vs.

 Evaluation of
 Design Alternatives
▪ the quantifiable best of a list of many
▪ trade-off decisions

– cost vs. benefits
– QA a vs. QA b

View

Model
Controller

ViewView

View

Model
Controller

ViewView

vs.

06/16/2009Ralf Reussner: SWA & Performance Prediction 27

Model-based Prediction of
Quantitative Properties

Software
Design Model

Annotated
Software
Design
Model

Analysis
Model

Analysis
Results

UML,
ADL,

…

UML Performance Profile,
QML,

 …

Queuing models
Stochastic Petri-Nets,

Stochastic Process Algebra,
…

Response time
Throughput,
Utilisation,

…

Estimation
Measurement

Transformation
 (MDD)

Analysis /
Simulation

Results

Automated by
Tools

Executable
Software

Transformation
 (MDD)

PDF-Folien für Studis:

- Benutzername stud
- Passwort sw-architektur
-aus dem Wiki verlinkt,
nach der Vorlesung
freigeschaltet

25

26

27

06/16/2009Ralf Reussner: SWA & Performance Prediction 28

Scientific Approach to Create
Quantitative Models

Software

Modell of Software
(mit Annotationen)

Measured Quality

Predicted Quality

Comparison
Abstraction

Prediction

Measurement

Interpretation

Acceptance / rejection
of abstract model

Improvement / Extension

06/16/2009Ralf Reussner: SWA & Performance Prediction 29

Validation
of Quantitative Models

▪ Type 1: Validation of
 Prediction Model
▪ Type 2: Validation of Applicability

– Case Studies and Controlled
Experiemts with Students

▪ Typ 3: Validation of Benefits
– in comparison to different methods
– Limitations of the Approach
– Required prerequisites
– FZI
– Industrial Partners

06/16/2009Ralf Reussner: SWA & Performance Prediction 30

Dom. Exp.
DSL Instance

Sys. Depl.
DSL Instance

Soft. Arch.
DSL Instance

Comp.Dev.
DSL Instance

Tr
an

sf
or

m
at

io
n

Stochastic
Regular Expr.

Analysis

SPA with
Scheduling

Tra
nsf

orm
ati

on
Analysis +
Simulation

Queueing
Network

Performance
Prototype

Java Code
Skeletons

Transformation

Transformation

Transform
ation

Simulation

Execution +
Measurement

Completion +
Compilation

Instance

Pa
rt

of

Par
t o

f

Part of

Part of

Palladio
Component
Model

28

29

30

06/16/2009Ralf Reussner: SWA & Performance Prediction 31

Factors on Quantitative
Component Properties

06/16/2009Ralf Reussner: SWA & Performance Prediction 32

06/16/2009Ralf Reussner: SWA & Performance Prediction 33

Roles  Component Model  Analysis Methods  CoCoME  ConclusionComponent Model

PCM Bench Screenshot

31

32

33

06/16/2009Ralf Reussner: SWA & Performance Prediction 34

Roles  Component Model  Analysis Methods  CoCoME  ConclusionComponent Model

Tool Support

06/16/2009Ralf Reussner: SWA & Performance Prediction 35

Execution Time of a()?

?ms

2ms
3ms

5ms

Service Effect Specification
(SEFF)

a(list, count):

06/16/2009Ralf Reussner: SWA & Performance Prediction 36

Service Effect Specification
(1)

34

Syntax comparable to
UML activity charts

35

36

06/16/2009Ralf Reussner: SWA & Performance Prediction 37

Annotierter SE-Automat 
eines Dienstes DoOrderBilling

void DoOrderBilling (ListOfOrders orders,
 CCServer myCCServer)
{
 myCCServer.Connect(
 resources.GetCCServerURL());
 foreach (Order o in orders)
 {
 if (!o.HasValidCC())
 {
 BillCashOnDelivery(o);
 }
 else
 {
 myCCServer.Transfer(o);
 }
 }
 myCCServer.Disconnect();
}

GetCCServerURL

Connect

Disconnect

p1 HasValidCC

BillCashOnDelivery

Transfer

X1

X2

X6 X5

X4

X3 p2

1-p2

1-p1

06/16/2009Ralf Reussner: SWA & Performance Prediction 38

Systematische Berechnung
der Verteilungsfunktion

p1

X1

X2

X6
X5

X4

X3
p2

1-p2

1-p1 X1;X2;(X6|p1(X3(X4|p2X5))*)

;

;

|

X1

X6

X2

*

;

|
X3

X4 X5

p1

p2

06/16/2009Ralf Reussner: SWA & Performance Prediction 39

Komposition: Alternative

p

1-p

As an example consider
the following code and
its associated service
effect automaton. It can
be seen, that transitions
correspond to external
calls, while any internal
computation is
abstracted away within
nodes. Nodes represent
internal computation.

The ps on the branchings
are the probabilities for
controll flow forking.

In order to specify
37

For this purpose the
service automaton is
translated into a regular
expression. Afterwards
the parse tree of the
regular expression is
created.

This parse-tree gives us
the order of how to apply
the basic operators of
alternative, sequence
and loop to the
distribution functions.

By stepwise using of
these operators the

38

A random variable
associated to an
alternative is
represented as a sum of
the alternative paths
weighted with the call
probabilities. The
associated probability
mass function is
therefore the weighted
sum of single probability
mass functions. The
weights are the
probabilities of the
alternative transitions

39

06/16/2009Ralf Reussner: SWA & Performance Prediction 40

Komposition: Sequenz

06/16/2009Ralf Reussner: SWA & Performance Prediction 41

Komposition: Schleife

p
1 - p

06/16/2009Ralf Reussner: SWA & Performance Prediction 42

Konvergenz-
prüfung

For a sequential
execution of services the
time consumption of the
whole sequence is the
sum of time consumption
for each external call-
Therefor the random
variable associated to a
call sequence is
represented as a sum of
the random variables
assigned to the
individual edges. The
probability mass function
results from the

40

A loop is either run again
with probability p or left
with probability 1-p.
Therefore one can
represent a loop as a
choice of an infinite
number of alternative
paths.

The associated
probability mass function
is given by the infinite
series. If k is zero, the
convolution is defined to
be unity impulse which is
a unity of the

41

Above is the expression
of the probability mass
function for the loop
once more.

We use the Fourier
transform to prove the
existence of the limit.
The advantages of the
Fourier transform is that
the convolution becomes
a product in the Fourier
space. The discrete
Fourier transforms for x
and y exist, so we can
apply the Fourier

42

06/16/2009Ralf Reussner: SWA & Performance Prediction 43

p1

X1

X2

X6
X5

X4

X3
p2

1-p2

1-p1

;

;

|

X1

X6

X2

*

;

|
X3

X4 X5

Systematische Berechnung
der Verteilungsfunktion

X1;X2;(X6|p1(X3(X4|p2X5))*)

06/16/2009Ralf Reussner: SWA & Performance Prediction 44

Validierung (1)

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

64
00

65
50

67
00

68
50

70
00

71
50

73
00

74
50

76
00

77
50

79
00

80
50

82
00

83
50

85
00

86
50

88
00

89
50

91
00

92
50

94
00

95
50

97
00

98
50

10
00

0

10
15

0

10
30

0

10
45

0

10
60

0

10
75

0

10
90

0

11
05

0

11
20

0

11
35

0

Response Time

Pr
ob

ab
ili

ty

Measurement Prediction

06/16/2009Ralf Reussner: SWA & Performance Prediction 45

Modellverbesserung:
Beliebige VF für Anzahl von

Schleifendurchläufen

▪ Sequenz:
▪ Alternative:
▪ Schleife:

On the slides above we
have seen how to
calculate the basic
operators: alternative,
sequence and loop. In
this way we can
subsequently calculate
the probability mass
function respectively the
distribution functions of
the method described by
the service effect
automaton. And this is
the response time
distribution of the whole

43

44

45

06/16/2009Ralf Reussner: SWA & Performance Prediction 46

Validierung (2)

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05
64

00

65
50

67
00

68
50

70
00

71
50

73
00

74
50

76
00

77
50

79
00

80
50

82
00

83
50

85
00

86
50

88
00

89
50

91
00

92
50

94
00

95
50

97
00

98
50

10
00

0

10
15

0

10
30

0

10
45

0

10
60

0

10
75

0

10
90

0

11
05

0

11
20

0

11
35

0

Response Time

Pr
ob

ab
ili

ty

Measurement Calculation Calculation (old loop concept)

06/16/2009Ralf Reussner: SWA & Performance Prediction 47

Component
Developers

Ecore

Service Effect
Specification (2)

06/16/2009Ralf Reussner: SWA & Performance Prediction 48

MediaStore - Architecture

46

47

48

06/16/2009Ralf Reussner: SWA & Performance Prediction 49 51

06/16/2009Ralf Reussner: SWA & Performance Prediction 50 52

Results

06/16/2009Ralf Reussner: SWA & Performance Prediction 51 53

Results

49

50

51

06/16/2009Ralf Reussner: SWA & Performance Prediction 52

▪ Model-centric development instead of code-
centric development
▪ Without an architecture you won´t have fun

in re-use, evolution, organisation, planning,
non-functional properties
▪ But front-end costs are increased
▪ You have to be familiar with modelling and

certain techniques to benefit from
architectures
– reuse (pattern, product-lines, etc), planning

▪ and do not forget the three views:

Lessons Learned

06/16/09 54Software Architecture, WS 08/09, R. Reussner

06/16/2009Ralf Reussner: SWA & Performance Prediction 53

▪ Used to document an architectural design.
▪ Static structural model that shows the major

system components.
– Interface model that defines sub-system interfaces.

▪ Dynamic process model that shows the process
structure of the system.
– Relationships model such as a data-flow model that

shows sub-system relationships.
▪ Deployment model that shows how sub-

systems and connections are mapped to
ressources, such as processors or network
connections
– distribution across computers.

Architectural Views

06/16/09 55Software Architecture, WS 08/09, R. Reussner

06/16/2009Ralf Reussner: SWA & Performance Prediction 54

▪ Some of the slides are taken from
Sommerville, Software Engineering 7th Ed.

Copyright Notice

06/16/09 56Software Architecture, WS 08/09, R. Reussner

52

53

54

06/16/2009Ralf Reussner: SWA & Performance Prediction 5506/16/09 57

Conclusions

▪ Prediction and Understanding of the Consequences
of Design Decsions is THE central characteristic of
an engineering discipline.

▪ Components and MDD lower the degrees of
freedom in implementation

▪ Creativity is on design-model level
▪ Quality-driven Design requires prediction models

– automatically generated from design models
▪ Definition of design and prediction models follows

the scientific process of the natural sciences.
– No proofs possible, but empirical validations necessary

Software Engineering becomes “architecture-centric”.
Code-centration is as meaningful as

“brazing solder-centration” of an Electrical Engineer

Engineering? – Components – PCM – Example – Conclusions

06/16/2009Ralf Reussner: SWA & Performance Prediction 56

http://www.palladio-approach.net

http://sdq.ipd.uka.de

55

56

