
Determining Implementation Expertise from Bug Reports

John Anvik and Gail C. Murphy
University of British Columbia

Vancouver, B.C., CANADA
{janvik, murphy}@cs.ubc.ca

Abstract

As developers work on a software product they accumu-
late expertise, including expertise about the code base of the
software product. We call this type of expertise ‘implemen-
tation expertise’. Knowing the set of developers who have
implementation expertise for a software product has many
important uses. This paper presents an empirical evalua-
tion of two approaches to determining implementation ex-
pertise from the data in source and bug repositories. The
expertise sets created by the approaches are compared to
those provided by experts and evaluated using the measures
of precision and recall. We found that both approaches are
good at finding all of the appropriate developers, although
they vary in how many false positives are returned.

1 Introduction

As developers work on a software product they accumu-
late expertise. They accumulate expertise in the particular
tools that they use. They accumulate expertise in the soft-
ware engineering processes and practices that they use. Fi-
nally, they accumulate expertise in the code base of the soft-
ware product itself. We refer to this last form of expertise
as implementation expertise.

Knowing the set of developers who have implementa-
tion expertise for a particular part of the software system is
a useful piece of information. For instance, if a developer
knows who has implementation expertise for a particular
source code file then they know with whom to communi-
cate for help and advice in solving a problem with that file.
Studies have shown that, depending on the phase of the de-
velopment cycle, developers spend 50% [7, 13] to 70% [5]
of their time communicating with others. Knowing with
whom to communicate may thus help increase a developer’s
effectiveness.

In software engineering, there have been two significant
efforts towards providing a list of experts for a source code
file: the Expertise Recommender [10] and the Expertise

Browser [12]. Both of these projects use a form of the “Line
10 Rule” to determine expertise. The “Line 10 Rule” is a
heuristic in which line 10 of the source repository check-in
log for a particular file – the line containing the user name
of the person who performed the commit – is used to deter-
mine who has expertise for that source file. The Expertise
Recommender uses this heuristic to present the name of the
developer with the most recent expertise for the source file.
The Expertise Browser uses the heuristic to gather and rank
the expertise of developers for the source file.

In each of these cases, the intent is to discover either the
developer or group of developers who have expertise with
a specific source code artifact. The work described in this
paper looks at accomplishing a similar goal for a different
project artifact: the bug report.

For many software projects the primary unit of work is
the bug report.1 Knowing which developers have imple-
mentation expertise to help resolve a particular bug report
has a number of uses. Similar to previous work, the list
can be used to suggest with whom to communicate about
a problem, before the source code is even considered or
touched. The list can be used to help determine who might
fix a bug, enabling the creation and evaluation of bug report
assignment recommenders [1]. Finally, the list can be used
to analyze if project implementation expertise is appropri-
ately spread out across the developers.

If there existed a strong linkage between the bug and
source repositories, determining the developers with appro-
priate implementation experience to solve a particular bug
report could proceed in a manner similar to the Expertise
Browser. For example, even before implementation work
proceeds on a bug of interest, similar resolved bugs to the
bug of interest could be located and the “Line 10 Rule”
could then be applied to the source code files linked to the
similar bugs. Although there exists some tools that support
such a linkage, such as Rational ClearCase, many projects
use tools in which this linkage is dependent on project con-
ventions which are not always followed [1, 15]. For exam-

1In this paper we refer to reports that either specify a software fault or
a feature request by the colloquial term “bug report”.

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

ple, in the Firefox2 and Eclipse3 projects, the convention
is to forge the link by referring to the report identification
number in the source repository check-in comment. For the
gcc4 project, a comment is added to the bug report that lists
the files that were touched by the fix.

A more subtle problem with using this linkage technique
is the assumption that the developer checking in the fix is
the developer who made the fix. This assumption does not
hold for all projects. An example is the Firefox project. For
this project, the person who fixes the bug requests that the
fix be applied to the source repository and only a subset of
the project community can actually commit such a submit-
ted fix. If care is not taken to handle these cases, they can
cause the linkage technique to improperly assign expertise
to project members.

An alternative to using the source repository is to use
the bug repository. The report activity log, comments, and
other fields in the bug report can indicate which developers
have been associated with a previously resolved report. This
data can then be used to determine who has implementation
expertise for the report.

Previous work on mining expertise has focused on either
one or the other of these repositories (e.g., [1, 3, 4, 6, 10,
12]). In all of these cases, the method introduced has been
indirectly evaluated by having it as part of a recommender
system and then evaluating how well the system makes rec-
ommendations (see Section 5). In this paper, we provide a
direct empirical comparison of approaches based on each of
these repositories to information from human experts asso-
ciated with the project. This direct comparison provides a
baseline by which to judge new and existing approaches.

The two approaches that we compare are the use of
source repository logs and the use of carbon-copy (CC:)
lists, comments, and resolver information from reports in
bug networks [14]. To evaluate these two approaches we
used project experts from the Eclipse Platform project to
provide implementation expertise sets5 for reports in a test
set. We evaluate the effectiveness of these approaches using
the standard measures of precision6 and recall.7 As the use
of the expertise set produced by an approach determines if
a high precision or a high recall is more important, we don’t
try to emphasis one over the other in the approaches. In-
stead we are interested in exploring the relative strengths
and weaknesses of the two approaches. We found that both
approaches had low to moderate precision, ranging from

2http://www.firefox.com, verified 19/01/07
3http://www.eclipe.org, verified 19/01/07
4http://gcc.gnu.org/, verified 20/01/07
5We use the term ‘set’ to indicate that the experts and the approaches

did not produce ranked lists.
6Precision is a measure of how many of the developer names in the set

were correct.
7Recall is a measure of how many relevant developers are returned by

the approach.

39% to 59%, and high recall, ranging from 71% to 92%.
The bug report approach was found to be a good alterna-
tive to the source repository approach with a slightly worse
precision being traded off for a higher recall.

This paper makes two contributions. First, since existing
approaches to mining implementation expertise do not pro-
duce perfect results, it is reasonable to expect researchers
to continue to develop approaches in this area. This pa-
per provides input into this future research by establishing
the effectiveness of the basic approaches against expert in-
formation. Second, since experts can be difficult to access
for the open-source projects that are often used in academic
research in this area, it provides a baseline of what may
be possible with existing approaches; new approaches that
exceed the existing precision and recall may then be more
likely to produce better results in actual use.

We begin by providing some background and describe
the two approaches for mining implementation expertise
that we are investigating. We then provide a description of
our experiment and present our results. We finish the paper
with a discussion of our findings and of related work.

2 Background and Approaches

We mined data from two different types of project repos-
itories to determine developer expertise: the source code
repository and the bug repository. In this section we provide
an overview of some of the data found in these repositories
and how we used it to construct implementation expertise
sets.

2.1 Source Repository Check-in Logs

When a developer submits code to a source repository
(also known as ‘checking-in’ or ‘committing’), the repos-
itory logs the submission. The submission log entry in-
cludes various pieces of information, such as the file that
was checked in, its revision number, the check-in date and
time, and the check-in comment made by the committer.
The source repository software allows a user to view all the
log entries for a specific file.

Using the source repository check-in logs to create an
implementation expertise set for a bug report involves three
steps.

The first step is to establish the linkage between the
bug report and the source repository. For projects that use
tools that provide this linkage, this step is trivial. For other
projects, this requires knowledge of the project’s linkage
convention. If the convention is to refer to the bug report
identification number in the check-in comment, then estab-
lishing the linkage involves searching the source repository
logs for that number.If the convention is to list the changed
files in the bug report, this list is extracted from the report.

2

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

In either case the result is a list of source files that forms the
change set for the report [16].

The next step is to determine the containing module for
each source file in the change set. The containing module
may refer to the file itself or some higher abstraction such
as its package in the case of software implemented in Java.
This step recognizes that it may be unrealistic to just ex-
amine source files for a particular fix when determining ex-
pertise. Developers who work with associated files, such as
those in the same package, also have some level of imple-
mentation expertise that may be relevant, and this expertise
should not be discounted. In this work we compare the use
of two different definitions for a containing module: a Java
source file and its package. This choice allows us to test the
hypothesis, under one condition, that using a more general
containing module will provide a better expertise set.

Next, a set of developers who had previously committed
changes to the modules is compiled. This set is constructed
by analyzing the revision history of each file in the module
and using the “Line 10” heuristic on all the log entries for
the module.

Finally, the set is filtered to remove the names of devel-
opers who are no longer relevant. Explanation of how we
obtained the set of relevant developers is deferred to Section
3 where we explain the experiment.

2.2 Bug Reports and Bug Networks

A bug report contains many pieces of information in the
form of pre-defined fields, free-form text, attachments, and
dependencies.

To create a list of developers with implementation exper-
tise for a bug report, we first generate the bug network that
contains the report (see Section 2.2.1). Next, we extract the
following information from each report in the network:

• the names of the people in the carbon-copy (CC:) list
of the bug report (Section 2.2.2),

• the names of the people who added comments to the
bug report (Section 2.2.3), and

• the name of the developer who fixed the bug (Section
2.2.4).

We take these lists from each report in the network and
merge them to form the implementation expertise set for
the bug report. As with the source repository check-in ap-
proach, the set is filtered to remove any irrelevant names.

2.2.1 Bug Report Networks

A bug report network is a collection of inter-related bug
reports formed when members of the development commu-
nity assert duplication, dependency, and reference relation-
ships between two bug reports. A duplication relationship

states that two bug reports describe the same problem. A
dependency relationship states that one bug is “blocking” or
“depends on” the resolution or testing of another bug. Both
duplication and dependency relations are formal, symmet-
rical relationships, meaning that bug repositories have an
established convention for specifying the dependency, such
as setting a particular field, and that the relationship is bi-
directional. A reference relationship is an informal relation-
ship whereby a community member adds a comment to the
bug report such as “See bug #2007”, “My fix might also
help fix bug #2007.” or “Should bug #2007 be added to
this bug?”. Sandusky and colleagues found that 65% of the
reports they examined8 were related by one of these three
relationships [14].

Figure 1 shows a bug network that contains all of these
types of relationships. The figure shows a situation where
Report B “blocks” the resolution of Report A (and there-
fore Report A “depends on” Report B), Report C describes
the same problem as Report A and has been marked as a
duplicate, and a comment in Report A refers to Report D.

Figure 1. Forms of bug networks.

2.2.2 Bug report CC: lists

The carbon-copy (CC:) list of a bug report is a list of in-
dividuals who want to be notified when changes are made
to the report. There are a variety of reasons that someone
would be interested in changes to a bug report. If the bug
report represents a problem, the individuals may be encoun-
tering the problem and want to know when the problem is
fixed. If the individual is a developer for the project, they
may be interested because they are working on a bug for
which this bug is blocking their progress. Another reason
is that perhaps a more senior developer would like to keep
tabs on the work of a junior developer who he is mentoring.

With respect to implementation expertise, the CC: list is
a noisy data source. The list is commonly polluted with the
names of people who have no project expertise, but are sim-
ply interested in the report. It is therefore necessary to clean
up this data by filtering out names of individuals who are
not developers for the project. In the approach we test, we
defer this filtering until the lists from the three data sources
are combined.

8Sandusky and colleagues examined a sample of 385 reports drawn
from a population of more than 182,000 bug reports opened over a five
year period.

3

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

2.2.3 Bug Report Comments

Discussion between developers about the best way to ap-
proach fixing a bug or the consequences of a particular fix
are common [8]. In a distributed development environment
these discussions are frequently reflected in the comments
of a report, although other means of communication, such
as email and instant messaging, are possible and are known
to be used [13]. In our work, we assume that all communi-
cation about a particular bug is restricted to the bug report.
We do this for two reasons. First, we are interested in gener-
ating a reasonable implementation expertise set exclusively
from bug report data. Second, ensuring that all formal and
informal communication about the bug report is captured is
not feasible. This assumption therefore sets a lower bound
on the number of people with implementation expertise for
the report.

We extract the name directly from the comment section
of the report as comments are labeled with the name of the
person making the comment. As with CC: lists, comments
represent a noisy data source and must similarly be filtered,
but we defer this filtering until the sets are combined.

2.2.4 ‘Who Fixed’ Heuristics

The most direct way to determine implementation expertise
for a bug report is to know who fixed the report. There are
two obvious techniques for determining who fixed a par-
ticular bug. The first is to examine the source repository
check-in logs to discover who checked in the fix. However,
as explained in Section 1, using this technique is problem-
atic as it assumes that the person committing the change is
the person who made the change.

The second technique is to use the value of the status
and assigned-to fields in the bug report. This approach
is also problematic. The problem is that projects often use
the status and assigned-to fields of a bug report for
additional purposes than who is assigned to fix the prob-
lem. For example, in both the Eclipse Platform and Fire-
fox projects, the value of the assigned-to field does not
initially refer to a specific developer. Instead new and un-
confirmed reports are first assigned to a default email ad-
dress before they are assigned to an actual developer.9 For
reports with a trivial resolution, such as “duplicate”, the
assigned-to field is often never changed. Another use
is to pass the report on to a quality assurance team mem-
ber for verification of a submitted patch. After the patch is
verified, the report is marked fixed, but the assigned-to
field does not refer to the correct developer.

As a result of these problems, we found the need in
our previous work [1] to develop a set of project-specific
heuristics for determining who fixed a particular bug. These

9A user name in the Bugzilla system is an email address.

heuristics can be derived either from direct knowledge of
a project’s process or by examining the logs of a random
sample of bug reports for the project. We took the lat-
ter approach resulting in a set of heuristics for various
projects. We provide two examples of heuristics for the
Eclipse project here.10

1. If a report is resolved as FIXED, it was fixed by who-
ever marked the report as resolved.

2. If a report is resolved as DUPLICATE, it was resolved
by whoever resolved the report of which this report is
a duplicate.

3 Evaluation of the Approaches

To evaluate the two approaches, we used developers
(hereafter referred to as ‘experts’ for clarity) to provide the
correct implementation expertise sets for a test set of bug
reports. The effectiveness of each approach was then found
by comparing the sets generated by the approach to those
from the experts. We used bug reports from the Eclipse
Platform project for our test set and experienced developers
from three of the project’s components as the experts. Our
methodology for the evaluation was:

1. Determine a set of bug reports to use as our test set
(Section 3.1).

2. Have experts from the project construct expertise sets
for each report (Section 3.2). Sets for the same bug
report were then unioned to form the set used for com-
parison.

3. Apply the two approaches to the reports in the test set.

4. Compare the results from the two approaches to the
sets generated by the experts (Section 3.3).

3.1 Test Set

For the test set, we selected reports from the Eclipse Plat-
form project that met the following four criteria:

1. The report was resolved as fixed in the one month pe-
riod of June 1, 2006 to June 30, 2006 inclusive. We
wanted to use recent reports to enable appropriate re-
call by the developers. This time period also repre-
sents a very active time for the project as it was the
month before the last major version (v. 3.2) release of
Eclipse. During this period there were over 300 reports
resolved as fixed for the project. This is important as

10The full set of heuristics for Eclipse and other projects is avail-
able on-line at http://www.cs.ubc.ca/labs/spl/projects/
bugTriage/assignment/heuristics.html.

4

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

Table 1. Number of test set reports broken
down by component.

Component # Reports # Developers # Responses
SWT 11 11 2

UI 10 30 2
Debug 8 6 1

the remaining criteria reduces the potential candidates
significantly.

2. The report has an explicit linkage to source repository
logs entries (see Section 2.1).

3. The report is part of a bug network of up to 30 reports
in size. We placed an upper limit on the number of
reports because as the network grows beyond a cer-
tain size it contributes less relevant information. An
alternative to choosing a fixed size for the network is
to limit the reports in the network based on their rela-
tional distance to the the test report.

4. The report was for an Eclipse Platform component that
has five or more reports that meet the previous three
criteria of resolution date, explicit source repository
linkage, and network size. As development teams for
the project are structured around the project’s compo-
nents, this criteria ensures that there are a sufficient
number of test reports for analysis by experts.

Using these criteria, we obtained a set of 29 reports. The
reports were grouped by component for the collection of the
expertise sets (see Table 1).

3.2 Expert Generated Implementation
Expertise Sets

Experts for the UI, SWT, and Debug components were
provided with a small application designed for collecting
the expertise sets. The expert was asked to specify for which
component they had expertise. The application then pre-
sented a sequence of between eight and eleven bug reports,
depending on the component. For each bug report the ex-
pert was asked to read the summary and description of the
report and choose from a set of developers. Five experts
participated in the study.11

The set of developers that the experts chose from con-
sisted of all the developers found to have made commits to
the files of the Eclipse Platform project during the period
of April 2006 to June 2006. This period of time represents
the three months (inclusive) before the period from which

11The developers who provided expertise sets all had over two years of
experience on their respective components.

the test reports were selected.12 Forty-two developers were
found to have made commits to the projects during this pe-
riod. One name was discarded as an anomaly as the de-
veloper had been very active in the repository well over a
year ago in the past and then made a single commit during
this time. He was therefore deemed to not be an active de-
veloper. We feel that this technique provides a reasonably
accurate snapshot of all the developers actively working on
the project, not just those targeted in the test set. As such,
this set was used for filtering the sets generated by the ap-
proaches to remove the names of the individuals who were
not relevant.

The constructed set of developers also provides a suffi-
cient number of distractors. Adding items that distract from
those that are likely relevant is a common technique for lim-
iting the bias that may occur in a presented list [2, 9]. The
second column of Table 1 shows the number of the devel-
opers we believe were working on each component. This
was determined in a similar manner as determining the ac-
tive developers for the project, but only logs for the partic-
ular component were used. Although the UI component is
shown to have had 30 developers at this time, it is known
that the component has a number of subcomponents so this
number relative to a given report is likely inflated.

Unlike similar studies [9], we did not ask for a ranking
of the developer’s expertise relative to the problem. We
assume that all developers that are selected by experts are
equally capable of fixing the problem. We made this choice
because we were only interested in determining who has
implementation experience, not who were the best in the
set.

Experts were asked to examine the summary and de-
scription of the report and then select from the set which
developers they felt would have the expertise to fix the
problem described. The source repository user names were
mapped to the actual names of the developers for presenta-
tion clarity.

Experts who worked on more than one of the test set
components were asked to run the application for each com-
ponent on which they worked. After providing data for the
set of reports, the expert was asked to provide any names
that they felt were missing. No expert did so. Expertise
sets created by different experts for the same report were
combined to form the final set used in the evaluation. The
amount that the experts agreed between themselves ranged
from total agreement to complete disagreement. In most
cases the experts would agree on one or two names for each
set. There were only five cases out of the twenty-nine where
the experts did not agree at all.

12Expanding this time period was found to only add names for develop-
ers that appeared to not be significantly contributing to the project.

5

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

Table 2. The minimum, average, and maxi-
mum sizes of the sets from the experts and
the three approaches.

Min Mean Max
Expert Sets 1 4 30

SR-Change Set 1 3 6
SR-Package 4 8 13

Bug Network 2 5 12

Table 3. Average precision & recall for the dif-
ferent approaches of expert set generation.

Precision Recall
S.R. (Change Set) 59 71

S.R. (Package) 39 91
Bug Network 56 79

3.3 Results

Table 2 shows the sizes of the implementation ex-
pertise sets created by the experts and the approaches.
The source repository approach using package granular-
ity (SR-Package) was found to produce larger sets than
the source repository approach using change set granular-
ity (SR-Change Set). Given that a package granularity is
more general than a change set granularity, this is not sur-
prising. The bug network approach was found to produce
sets of comparable size to that of SR-Change Set, and both
of these approaches produced sets of similar size to those
created by the experts.

Although the expertise sets created by the experts were
fairly small (an average size of 4), there was one anomaly.
For one of the test cases, an expert selected thirty different
developers as having the necessary expertise. Upon closer
examination of the test case, it was for a report where the
visibility of a group of methods was to be changed. As this
task does not require a high level of expertise, the expert
chose a large number of project developers.

Table 3 shows the results of our experiment. It presents
the average precision and recall for the two variations of the
source repository check-in approach and for the bug net-
work approach. The formulas for computing the precision
and recall values are given in Formulas 1 and 2 respectively.

Precision =
correct

size of generated list
(1)

Recall =
correct

size of expert list
(2)

We found that the SR-Package approach was the best, on
average, at finding the names of developers who had the rel-

evant implementation expertise (i.e a high recall). The SR-
Change Set approach was the best of the three at producing
an expertise set where most of the names were correct (i.e.
high precision) with few false positives. The approach us-
ing only information from the bug report produced similar
results to that of SR-Change Set, with a higher recall com-
pensating for a lower precision.

4 Discussion

4.1 Which is the Best Approach?

As stated before, we found that the source repository ap-
proach using the package as the ‘containing module’ tended
to be better at finding all the relevant names. However, this
was accomplished by producing sets that were larger than
those from the other approaches (see Table 2) and contained
many false positives. The source repository approach using
change sets was the best at producing sets that were mostly
correct, but the approach missed almost a quarter of the rel-
evant developers on average.

Deciding which is the best approach depends on how the
expertise set is going to be used. We present two applica-
tions where expertise sets would be used and discuss the
relative merits of using the different approaches. As the
approach using bug report data produces similar results as
the source repository approach using change set granularity,
we will only discuss the trade-offs between the two source
repository approaches.

4.1.1 Recommending Experts

If the expertise set is to be used for recommending experts,
then the SR-Change Set approach seems the best, as it will
produce a set with the fewest false positives. However, it
will miss, on average, about a quarter of the relevant devel-
opers. For the application of expert recommendation, this is
acceptable as the user is looking for an expert, not all the ex-
perts. If the SR-Package approach was used, then the set of
recommended experts would contain many incorrect names
and the user would likely quickly get frustrated with the rec-
ommender. This result then indicates that both the Expertise
Recommender and Expertise Browser system used the ap-
propriate approach for creating their recommendations.

4.1.2 Evaluating an Expertise Recommender System

A common technique for evaluating a recommender system
is to determine its average precision and recall with respect
to a testing set in a similar manner to how we evaluated
the two approaches. The key item of information needed
to compute the precision and recall is the set of correct an-
swers for each test case. If the recommender system under

6

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

evaluation is for recommending expertise, then the set of
all experts for the test case is needed. If the SR-Package
approach is used to generate this set, then nearly all of the
experts will be listed. This will mean that when the preci-
sion metric for the recommender system is calculated, it will
be close to the value that would have been obtained had ex-
perts provided the expertise sets. However, as the approach
produces sets that contain many false positives, the recall
value will be lower than the true value as the denominator
of the recall formula is the size of the set of experts and this
value will be larger than its true value. The converse is also
true. If the SR-Change Set approach is used to generate the
expertise set for evaluation, then the recommender’s calcu-
lated precision will be lower than the true precision of the
recommender, but the recall will be closer to its true value.
Choosing which approach to use for generating the exper-
tise set depends on if an accurate precision or recall value is
of most importance in the evaluation.

4.2 Using the Approaches for Other
Projects

For practical reasons, we used only one project, an
Eclipse project, to evaluate the approaches. Here we dis-
cuss how this project’s characteristics may or may not allow
these results to extend to other projects.

4.2.1 Using Source Repository Check-in Logs

As mentioned previously, one of the assumptions with the
source repository check-in approach is that the individ-
ual who commits the change is the one who made the
change. For the Eclipse Platform project, this assumption
holds. However, for a project which uses a process in which
fixes are reviewed and contributers must request that their
changes be checked in by a committer, the source repos-
itory approach will be naturally misleading. Our results
show that using the bug network approach is a reasonable
alternative that can be used for determining implementation
expertise for such a project.

4.2.2 Determining the Active Developers

As both approaches derive the expertise set from histori-
cal data, an important step for both approaches is the fil-
tering of the generated expertise sets to remove the names
of individuals who are not currently active on the project.
However, this step requires knowing who are the active de-
velopers. Our approach to obtaining this information was to
use source repository check-in information. For the Eclipse
project, this is appropriate as developers tend to also be
committers on the project. However, for a project where
fixes are checked-in by quality assurance representatives as

opposed to the developers, this is not appropriate, and an
alternate means would be necessary.

5 Related Work

To our knowledge, there has been only one other effort
towards evaluating how well an implementation expertise
approach works. The Expertise Recommender [9] was eval-
uated in a manner similar to how we evaluated the two ap-
proaches. The heuristics used in the system were derived
from the work practices of two groups. Users from the two
groups were presented with scenarios and a list of six rec-
ommendations with three recommendations being from the
Expert Recommender and three being distractors. Partici-
pants were asked to rank-order the recommendations, with a
blank space provided to allow the participant to add a name
if they felt there was one missing from the list. Points were
awarded to each list based on if a recommendation appeared
in the top half or a distractor appeared in the bottom half of
the ranked list. The mean score for the lists was 51.82 points
out of a maximum of 72 points. This was found to be signif-
icantly better than random, and so the system was deemed
to work reasonably well.

Although the Expertise Browser [12] used the ‘Line 10’
heuristic, it did not evaluate how well the heuristic worked.
Instead, the Expertise Browser was evaluated by deploying
it to sites of two different companies and collecting usage
information. The authors found that the tool was most used
at the site where the developers were least familiar with the
product and the team was small so that there were few ex-
perts. Qualitative user feedback was also collected and re-
vealed some unexpected uses of the tool.

As the heuristics in the Expertise Recommender were
evaluated using a point system, and our evaluation used pre-
cision and recall, we cannot directly compare our results
to that work. Similarly, as the Expertise Browser did no
heuristic evaluation, we cannot make any comparisons to
that work. However, the evaluation of both of these sys-
tems do contain results that are similar to our findings. In
the evaluation of the Expertise Recommender, McDonald
found that participants agreed the most with the ‘Line 10’
heuristic. In the evaluation of the Expertise Browser, a
manager commented that he learned more in a few min-
utes about who actually did what on a particular release than
when he was actively managing the release. Both of these
results are similar to our results that the source repository
approach can provide a reasonable approximation of imple-
mentation expertise.

Most recently, the Emergent Expertise Locator (EEL) by
Minto and Murphy [11] used the SR-Change Set approach
to determine expertise for emergent development teams.
Like this work, the measures of precision and recall were
used for evaluating expertise predictions. They reported a

7

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

precision and recall of 37% and 49% respectively for the
Eclipse project. Although these results appear to conflict
with ours, the data set used by Minto and Murphy covered
all of the Eclipse IDE projects, whereas our work only ex-
amined data for one of the Eclipse IDE projects and used a
much smaller data set.

6 Conclusion

This paper presented an empirical evaluation of two ap-
proaches for determining who has implementation exper-
tise for a bug report using data from two types of reposi-
tories. The first approach determined implementation ex-
pertise by examining the source repository check-in logs
for the ‘containing modules’ associated with the bug re-
port. The second approach used data from the bug reports
in the bug’s network to determine expertise. The expertise
sets created by the two approaches on a set of reports from
the Eclipse Platform project were compared to the expertise
sets produced by project experts. We found that depend-
ing on what was wanted from the expertise set, different
approaches were best. If it is important to ensure that all
developers with the necessary implementation expertise are
found, then the source repository approach using the pack-
age as the ‘containing module’ was the best. If it is im-
portant that the expertise set contain the fewest false posi-
tives, then the source repository approach using change set
as the ‘containing module’ was the most appropriate. The
bug report approach was found to be a good alternative to
the source repository approach using change sets, especially
when the source repository data is known to not be accurate.

As experts can be difficult to access for the open-source
projects that are often used in academic research in this area,
this work provides a baseline of what may be possible with
existing approaches; new approaches that exceed the exist-
ing precision and recall of these approaches may then be
more likely to produce better results in actual use.

7 Acknowledgments

This research was funded in part by NSERC and in part
by an IBM Eclipse Innovation Grant.

References

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proc. of the 28th Int’l Conference on Software En-
gineering, pages 318–370, 2006.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press / Addison-Wesley, 1999.

[3] G. Canfora and L. Cerulo. How software repositories can
help in resolving a new change request. In Workshop on
Empirical Studies in Reverse Engineering, 2005.

[4] D. Čubranić and G. C. Murphy. Automatic bug triage us-
ing text classification. In Proc. of Software Engineering and
Knowledge Engineering, pages 92–97, 2004.

[5] T. Dearco and T. Lister. Peopleware: Productive projects
and teams. Dorset House Publishing., New York, 1987.

[6] G. A. Di Lucca, M. D. Penta, and S. Gradara. An approach
to classify software maintenance requests. In Proc. of the
Int’l Conference on Software Maintenance, pages 93–102,
2002.

[7] J. D. Herbsleb, H. Klein, G. M. Olsen, H. Brunner, J. S.
Olsen, and J. Harding. Object-oriented analysis and design
in software project teams. Human Computer Interaction,
10(2&3):249–292, 1995.

[8] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In Proc. of the 29th
Int’l Conference on Software Engineering, 2007. To appear.

[9] D. W. McDonald. Evaluating expertise recommendations.
In Proc. of the 2001 Int’l ACM SIGGROUP Conference on
Supporting Group Work, pages 214–223, 2001.

[10] D. W. McDonald and M. S. Ackerman. Expertise recom-
mender: A flexible recommendation system and architec-
ture. In Proc. of ACM Conference on Computer Supported
Collaborative Work, pages 231–240, 2000.

[11] S. Minto and G. C. Murphy. Recommending emergent
teams. In Proc. of 4th Int’l Workshop on Mining Software
Repositories, 2007. To appear.

[12] A. Mockus and J. D. Herbsleb. Expertise browser: A quanti-
tative approach to identifying expertise. In Proc. of the 24th
Int’l Conference on Software Engineering, pages 503–512,
2002.

[13] D. E. Perry, N. A. Staudenmayer, and L. G. Votta. People,
organizations, and process improvement. IEEE Software,
pages 38–45, July 1994.

[14] R. J. Sandusky, L. Gasser, and G. Ripoche. Bug report net-
works: Varieties, strategies, and impacts in a f/oss devel-
opment community. Proc. of 1st Int’l Workshop on Mining
Software Repositories, pages 80–84, 2004.

[15] C. C. Williams and J. K. Hollingsworth. Bug driven bug
finders. In Proc. of 1st Int’l Workshop on Mining Software
Repositories, pages 70–74, 2004.

[16] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE Transactions on Software Engineering, 30(9):574–
586, 2004.

8

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

