
0/41

�

�

�

�

�

�

	

Isolating Infections

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/41

�

�

�

�

�

�

	

Isolating the Infection

Program
states

Variable and input values

Program
execution

✘

✘ ✘ ✘

✘

✘ Erroneous
code

Infected
state

Observer sees failure

Sane
state

2/41

�

�

�

�

�

�

	

Debugger Predicates

As shown before, debuggers have only limited support for
focusing:

Type GDB Command Predicate
Breakpoint break location PC = location
Watchpoint watch expr expr changes
Cond. bp break location if expr PC = location∧ expr

Does this suffice for understanding?
Answer: yes, but only at the lowest level

3/41

�

�

�

�

�

�

	

What we’d like to have

Spatial focusing (Data)

• Which variable has a value of 42?

• Which is the array x where x[1] == null?

• Which pointer is null?

Temporal focusing (Time/Code)

• When does x.left become null?

• When is log error called by connect?

• When does open return -1?

. . . and of course, the combination of both!

4/41

�

�

�

�

�

�

	

Trace Queries

Approach: temporal and spatial queries over traces

Store the trace. and query the database

Program
states

Variable and input values

Program
execution

User

?

Program
states

Variable and input values

Program
execution

5/41

�

�

�

�

�

�

	

Realizing Trace Queries

Real databases cannot be used to store or query traces.

Reason: too much data!
(hundreds of thousands of variables × billions of events)

In fact, any kind of storage is eventually too small.

Alternative:

• Translate queries into code that is checked at run-time
(via debugger or injected code)

• Execute program while query is active.

6/41

�

�

�

�

�

�

	

The Coca System

Coca allows for querying events and data in the trace.

Events and data are characterized by attributes:

Events
Attribute Meaning
type function/return . . .
port enter/exit
func function name
chrono time stamp
cdepth call stack
line current line
file current file

Data
Attribute Meaning
name variable name
type type
val value
addr address
size size in memory
linedecl declaration line
filedecl declaration file

7/41

�

�

�

�

�

�

	

Querying Traces in Coca

To query traces, Coca uses Prolog predicates.

A Prolog predicate contains

• logical variables (starting with an upper-case letter)

• atoms (starting with a lower-case letter)

• strings and numbers (as usual)

Coca returns all possible variable values that satisfy the
predicate.

8/41

�

�

�

�

�

�

	

Querying Examples

Spatial focusing (Data) – with current var

• Which variable has a value of 42?

[coca] current var(Name, val=42).
Name = x0
Name = x1
[coca]

• Which is the array x where x[1] == null?

[coca] current var(Name, val=array(-, null, ...).
Name = a1
Name = a2
[coca]

All queries apply to the current event only.

9/41

�

�

�

�

�

�

	

Querying Examples (2)

Temporal focusing (Time/Code) – with fget

• When does x become null?

[coca] fget(func=Fun and chrono=Chr),
current_var(x, val=null).

Fun = reset_x, Chr = 32
Fun = reset_x, Chr = 33
...
[coca]

• When does open return -1?

[coca] fget(func=open and port=exit),
current_var(status, val=-1).

[coca]

10/41

�

�

�

�

�

�

	

A Debugging Session

Again, we try to understand what’s going on in shell sort:

static void shell_sort(int a[], int size)
{

int i, j;
int h = 1;
do {

h = h * 3 + 1;
} while (h <= size);
do {

h /= 3;
for (i = h; i < size; i++)
{

int v = a[i];
for (j = i; j >= h && a[j - h] > v; j -= h)

a[j] = a[j - h];
if (i != j)

a[j] = v;
}

} while (h != 1);
}

11/41

�

�

�

�

�

�

	

A Debugging Session (2)

• Which variables are zero?

[coca] fget(func=shell_sort and line=Ln),
current_var(Name, val=0).

Name = a[2] Ln = 〈int i, j;〉
Name = v Ln = 〈int v = a[i]〉
Name = a[0] Ln = 〈a[j] = v〉

• Where does a[2] come from?

[coca] retrace.
[coca] fget(line=Ln),

current_var(a, val=array(-,-,0,...)).

Ln = 〈a = malloc(...)〉

12/41

�

�

�

�

�

�

	

Realization

Coca is built on top of an extended GNU debugger (GDB).

Queries are translated into appropriate GDB commands:

• fget() sets appropriate breakpoints and executes the
program

• current var() queries the set of variables

Drawback: General queries like

fget(func=shell sort), current var(a, val=1)

still require watchpoints or single-stepping.

13/41

�

�

�

�

�

�

	

An Alternate Approach

The Java virtual machine (JavaVM) has an interface for
monitoring the access of object attributes:

• Interrupt execution when some attribute is read

• Interrupt execution when some attribute is written

Since the JavaVM is realized in software,

• there are no limits on the number of monitors

• there is no substantial performance loss

– compared to debugger watchpoints

– compared to the usual “slow” Java execution

14/41

�

�

�

�

�

�

	

Java Queries

The debugger of Raimondas Lencevicius allows querying
program states for objects with specific properties:

• Which point has an x value of zero?

Point a. a.x = 0

• Which lexer has a token of 27?

Lexer l; Token t. l.token == t && t.type == 27

This query involves a Join over multiple variable sets.

15/41

�

�

�

�

�

�

	

Java Queries (2)

Lencevicius’ debugger supports static and dynamic queries:

Static Query. The query applies to a particular event (i.e. one
moment in the execution).

Dynamic Query. The query applies to the whole program
execution; it is checked “all the time”.

This requires a number of optimizations:

• Installation of JavaVM monitors on all affected objects

• Efficient queries (as queries are executed with each
change of an affected object)

Querying or restricting events (as in Coca) is not possible.

16/41

�

�

�

�

�

�

	

Assertions

So far, we have seen how to examine and query program
states at various events.

The interpretation of these program states is still left to us:
We must enter appropriate queries – in retrospective

Alternative: have the computer check for sane and infected
values during exection.

This is typically done using assertions.

17/41

�

�

�

�

�

�

	

The Assert Macro

Basic idea: A piece of code that ensures a sane state.

General usage:

assert(x);

• If x is true, nothing happens.

• If x is false, execution is aborted with a diagnostic:

foo.c, line 34: assertion ‘x’ failed
Aborted (core dumped)

18/41

�

�

�

�

�

�

	

Assertions for Pre- and Postconditions

Ensure that a function does the right thing

#include <assert.h>

void divide(int dividend, int divisor,
int& quotient, int& remainder)

{
assert(divisor != 0);
// Actual computation
...
assert(quotient * divisor + remainder == dividend);

}

19/41

�

�

�

�

�

�

	

Class Invariants

Goal: ensure the integrity of program state

class Game {
int n_flowers;
Map<string, int> flower_values;
// z.B. flower_values["rose"] == 500
...

public:
bool OK() {

assert(n_flowers >= 1);
assert(n_flowers == flower_values.size());
return true;

}
}

20/41

�

�

�

�

�

�

	

Combined Assertions

A class invariant must hold at the beginning and at the end of
each public class method:

void Game::add_flower(string name, int value)
{

assert(OK()); // Precondition

// Actual computation is here...

assert(OK()); // Postcondition
}

21/41

�

�

�

�

�

�

	

Loop Invariants

Consider this simple exponentiation code:

long prod = 1;
for (int i = 0; i < n; i++)

prod *= r;

The invariant

assert(prod == pow(r, i));

holds at the beginning of the loop, in the loop body, and after
the loop.

As we see here, an assertion of non-constant complexity can
degrade the program performance.

Therefore, assertions can be turned off.

22/41

�

�

�

�

�

�

	

Assert Definition

An actual definition of assert(x) looks like this:

#ifndef NDEBUG
#define assert(ex) \
((ex) ? 1 : (cerr << __FILE__ << ":" << __LINE__ \

<< ": assertion ‘" #ex "’ failed\n", \
abort(), 0))

#else
#define assert(x) ((void) 0)
#endif

If NDEBUG is defined, assert(x) compiles to a no-op

23/41

�

�

�

�

�

�

	

Assertions in Production Code

In production code, assertions are typically disabled (by
defining NDEBUG). This improves the efficiency.

As a consequence, assertions should not be used for checking
the integrity of external data (i.e. inputs, etc.)

• The checks will be turned off in production code

• Assertion failures are very unfriendly diagnostics (to
end-users, that is)

24/41

�

�

�

�

�

�

	

Assertions in Production Code (2)

I recommend leaving light-weight assertions on
in production code:

• We can afford a certain amount of efficency loss for
correctness sake

• Blue screens are unfriendly, but still better than wrong
results

You must include a user-friendly recovery from failures,
though.

25/41

�

�

�

�

�

�

	

Benefits of Assertions

Assertions serve three purposes:

They ensure program correctness. If the program terminates
normally, its state statisfies all assertions.

They document what’s going on. Assertions help in
understanding the program and its assumptions.

Since they are checked at compile-time and run-time, they
are consistent with the remaining program code (in
contrast to comments).

They help in debugging. In contrast to log statements or
debugger queries, assertions are persistent – they stay in
the code.

There is every reason to litter your code with assertions!

26/41

�

�

�

�

�

�

	

Heap Assertions

In C/C++ programs, misuse of the heap is a frequent source
for failures:

• using allocated memory after freeing it

• freeing allocated memory multiple times. . .

The GNU C runtime library provides assertions that can be
enabled at run-time:

$ MALLOC_CHECK_=2 myprogram myargs
free() called on area that was already free’d()
Aborted (core dumped)
$

27/41

�

�

�

�

�

�

	

Array Assertions

In C/C++ programs, accessing an array beyond its bounds is
another frequent failure source.

The electric fence library flags such violations automatically:

$ gcc -g -o sample-with-efence sample.c -lefence
$ sample-with-efence -11 14
Electric Fence 2.1
Segmentation fault (core dumped)
$

28/41

�

�

�

�

�

�

	

General Memory Assertions

The Valgrind tool checks all reads and writes of memory, and
intercepts calls to malloc/new/free/delete.

• Use of uninitialised memory

• Reading/writing memory after it has been free’d

• Reading/writing off the end of malloc’d blocks

• Reading/writing inappropriate areas on the stack

• Memory leaks – allocated area is not free’d

• Passing of uninitialised and/or unaddressible memory to
system calls

• Mismatched use of malloc/new vs free/delete

• Some misuses of the POSIX pthreads API

29/41

�

�

�

�

�

�

	

A Valgrind Example

$ valgrind myprogram myargs
==25832== Invalid read of size 4
==25832== at 0x8048724: BandMatrix::ReSize(int, int, int)

(bogon.cpp:45)
==25832== by 0x80487AF: main (bogon.cpp:66)
==25832== by 0x40371E5E: __libc_start_main (libc-start.c:129)
==25832== by 0x80485D1: (within /home/sewardj/newmat10/bogon)
==25832== Address 0xBFFFF74C is not stack’d, malloc’d or free’d

$

Process 25832 did an illegal 4-byte read of address
0xBFFFF74C.

This, as far as it can tell, is not a valid stack address, nor
corresponds to any currently malloc’d or free’d blocks.

The read is happening at line 45 of bogon.cpp, called from
line 66 of the same file, etc.

30/41

�

�

�

�

�

�

	

Valgrind and V Bits

Valgrind implements a synthetic Intel x86 CPU.

Every bit of data processed, stored and handled by the real
CPU has, in the synthetic CPU, an associated “valid-value” bit
(“V bit”).

The V bit says whether or not the accompanying bit has a
legitimate value – i.e. the bit is initialized.

Each byte in the system therefore has a 8 V bits which follow it
wherever it goes.

Example: CPU loads a word-size item (4 bytes) from memory ⇒
it also loads the corresponding 32 V bits.

31/41

�

�

�

�

�

�

	

How V Bits are Used

Should Valgrind flag every access to non-initialized data?

No, because many C/C++ programs routinely copy
uninitialized values around in memory:

struct S { int x; char c; };
struct S s1, s2;
s1.x = 42;
s1.c = ’z’;
s2 = s1;

How large is S?
Typically, 5 bytes will be initialized, 8 bytes will be copied.

32/41

�

�

�

�

�

�

	

How V Bits are Used (2)

Consequently, simple read accesses to not cause complaints.

Usage of uninitialized data causes complaints only if

• a value is used to generate a memory address

• a control flow decision needs to be made

• a value is passed to a system call (i.e. printed, etc.)

After a complaint, the value is regarded as well-defined (to
avoid long chains of error messages).

33/41

�

�

�

�

�

�

	

Valgrind and A Bits

In addition to V bits, all bytes in memory have an associated
“valid-address” bit (“A bit”).

The A bit indicates whether or not the program can
legitimately read or write that location.

Every time the program reads or writes memory, Valgrind
checks the A bits associated with the address. If any of them
indicate an invalid address, an error is emitted.

Please distinguish:

• V bits check whether values are valid,

• A bits check whether addresses are valid.

34/41

�

�

�

�

�

�

	

How A Bits are Used

• When the program starts, all the global data areas are
marked as accessible.

• malloc/new sets the A bits for the exactly the area
allocated.

• Local variables are marked accessible on function entry and
inaccessible on exit (by tracking the stack pointer)

• Some system calls (such as mmap()) cause A bits to
changed appropriately.

35/41

�

�

�

�

�

�

	

Valgrind Benefits and Drawbacks

Benefits

• Quick detection of uninitialized memory use

• Quick detection of heap misuse

Drawbacks

• Huge increase in code size (during execution)

• Large increase in memory size (during execution)

• Some increase in execution time

36/41

�

�

�

�

�

�

	

Using all these Tools

Logs, debuggers, queries, assertions, and memory
management tools all allow to access and assess the state.

We must still isolate the infection, though!

For this purpose, we have two general strategies:

Isolating a Specific State. Spatial focusing—across the
program state.

Isolating the Infection. Temporal focusing—across the
program execution.

37/41

�

�

�

�

�

�

	

Focusing Techniques

Program
states

Variable and input values

Program
execution

Focusing on parts of the state
(spatial focusing)

Focusing on
specific events
(temporal focusing)

38/41

�

�

�

�

�

�

	

Spatial Focusing

Basic idea: Separate sane state (= as intended) from
infected state (= not as intended)

• Use logging (or a debugger) to access state

• Use assertions (or likewise logging/debugger techniques)
to separate sane from infected state

39/41

�

�

�

�

�

�

	

Temporal Focusing

Basic idea: identify the moment in time where the state
becomes infected

• Use logging (or a debugger) to access execution

• Use assertions (or likewise logging/debugger techniques)
to separate sane from infected state

• Use binary search to find out the moment in time where the
state first became infected

• Trace back possible origins of the infection –
To be addressed in remainder of the course!

40/41

�

�

�

�

�

�

	

Concepts

✏ Trace queries allow high-level interaction with a debugger
to understand what’s going on

✏ Assertions are among the most useful programming tools –
both expressive and persistent

✏ Valgrind and similar tools introduce assertions on the
general program state

✏ Spatial focusing means to separate the state into sane (=
as intended) and infected

✏ Temporal focusing means to isolate the moment in time
where the infection occurs

✏ All this must be (and can be) automated!

41/41

�

�

�

�

�

�

	

References

• M. Ducassé: Coca: A Debugger for C Based on Fine Grained
Control Flow and Data Events. Proc. ICSE’99 (International
Conference on Software Engineering), Los Angeles,
May 1999, ACM Press.

Preliminary version at
http://www.inria.fr/RRRT/RR-3489.html

• R. Lencevicius: Advanced Debugging Methods. Kluwer
Academic Publishers, 2000.

• Valgrind, http://developer.kde.org/˜sewardj/

http://www.inria.fr/RRRT/RR-3489.html
http://developer.kde.org/~sewardj/

	Isolating the Infection
	Debugger Predicates
	What we'd like to have
	Trace Queries
	Realizing Trace Queries
	The Coca System
	Querying Traces in Coca
	Querying Examples
	Querying Examples (2)
	A Debugging Session
	A Debugging Session (2)
	Realization
	An Alternate Approach
	Java Queries
	Java Queries (2)
	Assertions
	The Assert Macro
	Assertions for Pre- and Postconditions
	Class Invariants
	Combined Assertions
	Loop Invariants
	Assert Definition
	Assertions in Production Code
	Assertions in Production Code (2)
	Benefits of Assertions
	Heap Assertions
	Array Assertions
	General Memory Assertions
	A Valgrind Example
	Valgrind and V Bits
	How V Bits are Used
	How V Bits are Used (2)
	Valgrind and A Bits
	How A Bits are Used
	Valgrind Benefits and Drawbacks
	Using all these Tools
	Focusing Techniques
	Spatial Focusing
	Temporal Focusing
	Concepts
	References

